Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Appl Biochem Biotechnol ; 194(12): 5918-5944, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1935861

ABSTRACT

Novel SARS-CoV-2 claimed a large number of human lives. The main proteins for viral entry into host cells are SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) and spike receptor-binding domain bound with ACE2 (spike RBD-ACE2; PDB ID: 6M0J). Currently, specific therapies are lacking globally. This study was designed to investigate the bioactive components from Moringa oleifera leaf (MOL) extract by gas chromatography-mass spectroscopy (GC-MS) and their binding interactions with spike glycoprotein and spike RBD-ACE2 protein through computational analysis. GC-MS-based analysis unveiled the presence of thirty-seven bioactive components in MOL extract, viz. polyphenols, fatty acids, terpenes/triterpenes, phytosterols/steroids, and aliphatic hydrocarbons. These bioactive phytoconstituents showed potential binding with SARS-CoV-2 spike glycoprotein and spike RBD-ACE2 protein through the AutoDock 4.2 tool. Further by using AutoDock 4.2 and AutoDock Vina, the top sixteen hits (binding energy ≥ - 6.0 kcal/mol) were selected, and these might be considered as active biomolecules. Moreover, molecular dynamics simulation was determined by the Desmond module. Interestingly two biomolecules, namely ß-tocopherol with spike glycoprotein and ß-sitosterol with spike RBD-ACE2, displayed the best interacting complexes and low deviations during 100-ns simulation, implying their strong stability and compactness. Remarkably, both ß-tocopherol and ß-sitosterol also showed the drug- likeness with no predicted toxicity. In conclusion, these findings suggested that both compounds ß-tocopherol and ß-sitosterol may be developed as anti-SARS-CoV-2 drugs. The current findings of in silico approach need to be optimized using in vitro and clinical studies to prove the effectiveness of phytomolecules against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Moringa oleifera , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , beta-Tocopherol , Phytochemicals/pharmacology , Plant Leaves , Molecular Dynamics Simulation , Plant Extracts/pharmacology , Protein Binding
2.
Nanotechnology Reviews ; 11(1):96-116, 2022.
Article in English | ProQuest Central | ID: covidwho-1572151

ABSTRACT

Graphene, owing to its unique chemical structure and extraordinary chemical, electrical, thermal, optical, and mechanical properties, has opened up a new vista of applications, specifically as novel sensing platforms. The last decade has seen an extensive exploration of graphene and graphene-based materials either alone or modified with nanoparticles and polymers for the fabrication of nanoscale biosensors. These biosensors displayed excellent conductivity, high sensitivity, and selectivity, good accuracy, and precision, rapid detection with low detection limits as well as long-term stability. The unmatched properties of graphene and graphene-based materials have been applied for the detection of a number of chemical and biological molecules successfully for the diagnosis of a variety of diseases, pathogens, and biomarkers of the diseases. This review is aimed to cover the fabrication methods, functionalization techniques, and biomedical applications along with the recent advancements in the field of development of graphene-based biosensors. Recent clinical trials and patents as well as market trends and opportunities associated with graphene-based biosensors are also summarized. The application of graphene-based biosensors in the detection of SARS-CoV-2 causing COVID-19 is also reviewed.

SELECTION OF CITATIONS
SEARCH DETAIL